extension | φ:Q→Aut N | d | ρ | Label | ID |
(C3×C18).1C23 = D9×Dic6 | φ: C23/C2 → C22 ⊆ Aut C3×C18 | 144 | 4- | (C3xC18).1C2^3 | 432,280 |
(C3×C18).2C23 = D18.D6 | φ: C23/C2 → C22 ⊆ Aut C3×C18 | 72 | 4 | (C3xC18).2C2^3 | 432,281 |
(C3×C18).3C23 = Dic6⋊5D9 | φ: C23/C2 → C22 ⊆ Aut C3×C18 | 72 | 4+ | (C3xC18).3C2^3 | 432,282 |
(C3×C18).4C23 = Dic18⋊S3 | φ: C23/C2 → C22 ⊆ Aut C3×C18 | 72 | 4 | (C3xC18).4C2^3 | 432,283 |
(C3×C18).5C23 = S3×Dic18 | φ: C23/C2 → C22 ⊆ Aut C3×C18 | 144 | 4- | (C3xC18).5C2^3 | 432,284 |
(C3×C18).6C23 = D12⋊5D9 | φ: C23/C2 → C22 ⊆ Aut C3×C18 | 144 | 4- | (C3xC18).6C2^3 | 432,285 |
(C3×C18).7C23 = D12⋊D9 | φ: C23/C2 → C22 ⊆ Aut C3×C18 | 72 | 4 | (C3xC18).7C2^3 | 432,286 |
(C3×C18).8C23 = D6.D18 | φ: C23/C2 → C22 ⊆ Aut C3×C18 | 72 | 4 | (C3xC18).8C2^3 | 432,287 |
(C3×C18).9C23 = D36⋊5S3 | φ: C23/C2 → C22 ⊆ Aut C3×C18 | 144 | 4- | (C3xC18).9C2^3 | 432,288 |
(C3×C18).10C23 = Dic9.D6 | φ: C23/C2 → C22 ⊆ Aut C3×C18 | 72 | 4+ | (C3xC18).10C2^3 | 432,289 |
(C3×C18).11C23 = C4×S3×D9 | φ: C23/C2 → C22 ⊆ Aut C3×C18 | 72 | 4 | (C3xC18).11C2^3 | 432,290 |
(C3×C18).12C23 = S3×D36 | φ: C23/C2 → C22 ⊆ Aut C3×C18 | 72 | 4+ | (C3xC18).12C2^3 | 432,291 |
(C3×C18).13C23 = D9×D12 | φ: C23/C2 → C22 ⊆ Aut C3×C18 | 72 | 4+ | (C3xC18).13C2^3 | 432,292 |
(C3×C18).14C23 = C36⋊D6 | φ: C23/C2 → C22 ⊆ Aut C3×C18 | 72 | 4 | (C3xC18).14C2^3 | 432,293 |
(C3×C18).15C23 = C2×C9⋊Dic6 | φ: C23/C2 → C22 ⊆ Aut C3×C18 | 144 | | (C3xC18).15C2^3 | 432,303 |
(C3×C18).16C23 = C2×Dic3×D9 | φ: C23/C2 → C22 ⊆ Aut C3×C18 | 144 | | (C3xC18).16C2^3 | 432,304 |
(C3×C18).17C23 = D18.3D6 | φ: C23/C2 → C22 ⊆ Aut C3×C18 | 72 | 4 | (C3xC18).17C2^3 | 432,305 |
(C3×C18).18C23 = C2×C18.D6 | φ: C23/C2 → C22 ⊆ Aut C3×C18 | 72 | | (C3xC18).18C2^3 | 432,306 |
(C3×C18).19C23 = C2×C3⋊D36 | φ: C23/C2 → C22 ⊆ Aut C3×C18 | 72 | | (C3xC18).19C2^3 | 432,307 |
(C3×C18).20C23 = C2×S3×Dic9 | φ: C23/C2 → C22 ⊆ Aut C3×C18 | 144 | | (C3xC18).20C2^3 | 432,308 |
(C3×C18).21C23 = Dic3.D18 | φ: C23/C2 → C22 ⊆ Aut C3×C18 | 72 | 4 | (C3xC18).21C2^3 | 432,309 |
(C3×C18).22C23 = D18.4D6 | φ: C23/C2 → C22 ⊆ Aut C3×C18 | 72 | 4- | (C3xC18).22C2^3 | 432,310 |
(C3×C18).23C23 = C2×D6⋊D9 | φ: C23/C2 → C22 ⊆ Aut C3×C18 | 144 | | (C3xC18).23C2^3 | 432,311 |
(C3×C18).24C23 = C2×C9⋊D12 | φ: C23/C2 → C22 ⊆ Aut C3×C18 | 72 | | (C3xC18).24C2^3 | 432,312 |
(C3×C18).25C23 = S3×C9⋊D4 | φ: C23/C2 → C22 ⊆ Aut C3×C18 | 72 | 4 | (C3xC18).25C2^3 | 432,313 |
(C3×C18).26C23 = D9×C3⋊D4 | φ: C23/C2 → C22 ⊆ Aut C3×C18 | 72 | 4 | (C3xC18).26C2^3 | 432,314 |
(C3×C18).27C23 = D18⋊D6 | φ: C23/C2 → C22 ⊆ Aut C3×C18 | 36 | 4+ | (C3xC18).27C2^3 | 432,315 |
(C3×C18).28C23 = C18×Dic6 | φ: C23/C22 → C2 ⊆ Aut C3×C18 | 144 | | (C3xC18).28C2^3 | 432,341 |
(C3×C18).29C23 = S3×C2×C36 | φ: C23/C22 → C2 ⊆ Aut C3×C18 | 144 | | (C3xC18).29C2^3 | 432,345 |
(C3×C18).30C23 = C18×D12 | φ: C23/C22 → C2 ⊆ Aut C3×C18 | 144 | | (C3xC18).30C2^3 | 432,346 |
(C3×C18).31C23 = C9×C4○D12 | φ: C23/C22 → C2 ⊆ Aut C3×C18 | 72 | 2 | (C3xC18).31C2^3 | 432,347 |
(C3×C18).32C23 = S3×D4×C9 | φ: C23/C22 → C2 ⊆ Aut C3×C18 | 72 | 4 | (C3xC18).32C2^3 | 432,358 |
(C3×C18).33C23 = C9×D4⋊2S3 | φ: C23/C22 → C2 ⊆ Aut C3×C18 | 72 | 4 | (C3xC18).33C2^3 | 432,359 |
(C3×C18).34C23 = S3×Q8×C9 | φ: C23/C22 → C2 ⊆ Aut C3×C18 | 144 | 4 | (C3xC18).34C2^3 | 432,366 |
(C3×C18).35C23 = C9×Q8⋊3S3 | φ: C23/C22 → C2 ⊆ Aut C3×C18 | 144 | 4 | (C3xC18).35C2^3 | 432,367 |
(C3×C18).36C23 = Dic3×C2×C18 | φ: C23/C22 → C2 ⊆ Aut C3×C18 | 144 | | (C3xC18).36C2^3 | 432,373 |
(C3×C18).37C23 = C18×C3⋊D4 | φ: C23/C22 → C2 ⊆ Aut C3×C18 | 72 | | (C3xC18).37C2^3 | 432,375 |
(C3×C18).38C23 = C6×Dic18 | φ: C23/C22 → C2 ⊆ Aut C3×C18 | 144 | | (C3xC18).38C2^3 | 432,340 |
(C3×C18).39C23 = D9×C2×C12 | φ: C23/C22 → C2 ⊆ Aut C3×C18 | 144 | | (C3xC18).39C2^3 | 432,342 |
(C3×C18).40C23 = C6×D36 | φ: C23/C22 → C2 ⊆ Aut C3×C18 | 144 | | (C3xC18).40C2^3 | 432,343 |
(C3×C18).41C23 = C3×D36⋊5C2 | φ: C23/C22 → C2 ⊆ Aut C3×C18 | 72 | 2 | (C3xC18).41C2^3 | 432,344 |
(C3×C18).42C23 = C3×D4×D9 | φ: C23/C22 → C2 ⊆ Aut C3×C18 | 72 | 4 | (C3xC18).42C2^3 | 432,356 |
(C3×C18).43C23 = C3×D4⋊2D9 | φ: C23/C22 → C2 ⊆ Aut C3×C18 | 72 | 4 | (C3xC18).43C2^3 | 432,357 |
(C3×C18).44C23 = C3×Q8×D9 | φ: C23/C22 → C2 ⊆ Aut C3×C18 | 144 | 4 | (C3xC18).44C2^3 | 432,364 |
(C3×C18).45C23 = C3×Q8⋊3D9 | φ: C23/C22 → C2 ⊆ Aut C3×C18 | 144 | 4 | (C3xC18).45C2^3 | 432,365 |
(C3×C18).46C23 = C2×C6×Dic9 | φ: C23/C22 → C2 ⊆ Aut C3×C18 | 144 | | (C3xC18).46C2^3 | 432,372 |
(C3×C18).47C23 = C6×C9⋊D4 | φ: C23/C22 → C2 ⊆ Aut C3×C18 | 72 | | (C3xC18).47C2^3 | 432,374 |
(C3×C18).48C23 = C2×C12.D9 | φ: C23/C22 → C2 ⊆ Aut C3×C18 | 432 | | (C3xC18).48C2^3 | 432,380 |
(C3×C18).49C23 = C2×C4×C9⋊S3 | φ: C23/C22 → C2 ⊆ Aut C3×C18 | 216 | | (C3xC18).49C2^3 | 432,381 |
(C3×C18).50C23 = C2×C36⋊S3 | φ: C23/C22 → C2 ⊆ Aut C3×C18 | 216 | | (C3xC18).50C2^3 | 432,382 |
(C3×C18).51C23 = C36.70D6 | φ: C23/C22 → C2 ⊆ Aut C3×C18 | 216 | | (C3xC18).51C2^3 | 432,383 |
(C3×C18).52C23 = D4×C9⋊S3 | φ: C23/C22 → C2 ⊆ Aut C3×C18 | 108 | | (C3xC18).52C2^3 | 432,388 |
(C3×C18).53C23 = C36.27D6 | φ: C23/C22 → C2 ⊆ Aut C3×C18 | 216 | | (C3xC18).53C2^3 | 432,389 |
(C3×C18).54C23 = Q8×C9⋊S3 | φ: C23/C22 → C2 ⊆ Aut C3×C18 | 216 | | (C3xC18).54C2^3 | 432,392 |
(C3×C18).55C23 = C36.29D6 | φ: C23/C22 → C2 ⊆ Aut C3×C18 | 216 | | (C3xC18).55C2^3 | 432,393 |
(C3×C18).56C23 = C22×C9⋊Dic3 | φ: C23/C22 → C2 ⊆ Aut C3×C18 | 432 | | (C3xC18).56C2^3 | 432,396 |
(C3×C18).57C23 = C2×C6.D18 | φ: C23/C22 → C2 ⊆ Aut C3×C18 | 216 | | (C3xC18).57C2^3 | 432,397 |
(C3×C18).58C23 = D4×C3×C18 | central extension (φ=1) | 216 | | (C3xC18).58C2^3 | 432,403 |
(C3×C18).59C23 = Q8×C3×C18 | central extension (φ=1) | 432 | | (C3xC18).59C2^3 | 432,406 |
(C3×C18).60C23 = C4○D4×C3×C9 | central extension (φ=1) | 216 | | (C3xC18).60C2^3 | 432,409 |