Extensions 1→N→G→Q→1 with N=C3xC18 and Q=C23

Direct product G=NxQ with N=C3xC18 and Q=C23
dρLabelID
C22xC6xC18432C2^2xC6xC18432,562

Semidirect products G=N:Q with N=C3xC18 and Q=C23
extensionφ:Q→Aut NdρLabelID
(C3xC18):C23 = C22xS3xD9φ: C23/C2C22 ⊆ Aut C3xC1872(C3xC18):C2^3432,544
(C3xC18):2C23 = S3xC22xC18φ: C23/C22C2 ⊆ Aut C3xC18144(C3xC18):2C2^3432,557
(C3xC18):3C23 = D9xC22xC6φ: C23/C22C2 ⊆ Aut C3xC18144(C3xC18):3C2^3432,556
(C3xC18):4C23 = C23xC9:S3φ: C23/C22C2 ⊆ Aut C3xC18216(C3xC18):4C2^3432,560

Non-split extensions G=N.Q with N=C3xC18 and Q=C23
extensionφ:Q→Aut NdρLabelID
(C3xC18).1C23 = D9xDic6φ: C23/C2C22 ⊆ Aut C3xC181444-(C3xC18).1C2^3432,280
(C3xC18).2C23 = D18.D6φ: C23/C2C22 ⊆ Aut C3xC18724(C3xC18).2C2^3432,281
(C3xC18).3C23 = Dic6:5D9φ: C23/C2C22 ⊆ Aut C3xC18724+(C3xC18).3C2^3432,282
(C3xC18).4C23 = Dic18:S3φ: C23/C2C22 ⊆ Aut C3xC18724(C3xC18).4C2^3432,283
(C3xC18).5C23 = S3xDic18φ: C23/C2C22 ⊆ Aut C3xC181444-(C3xC18).5C2^3432,284
(C3xC18).6C23 = D12:5D9φ: C23/C2C22 ⊆ Aut C3xC181444-(C3xC18).6C2^3432,285
(C3xC18).7C23 = D12:D9φ: C23/C2C22 ⊆ Aut C3xC18724(C3xC18).7C2^3432,286
(C3xC18).8C23 = D6.D18φ: C23/C2C22 ⊆ Aut C3xC18724(C3xC18).8C2^3432,287
(C3xC18).9C23 = D36:5S3φ: C23/C2C22 ⊆ Aut C3xC181444-(C3xC18).9C2^3432,288
(C3xC18).10C23 = Dic9.D6φ: C23/C2C22 ⊆ Aut C3xC18724+(C3xC18).10C2^3432,289
(C3xC18).11C23 = C4xS3xD9φ: C23/C2C22 ⊆ Aut C3xC18724(C3xC18).11C2^3432,290
(C3xC18).12C23 = S3xD36φ: C23/C2C22 ⊆ Aut C3xC18724+(C3xC18).12C2^3432,291
(C3xC18).13C23 = D9xD12φ: C23/C2C22 ⊆ Aut C3xC18724+(C3xC18).13C2^3432,292
(C3xC18).14C23 = C36:D6φ: C23/C2C22 ⊆ Aut C3xC18724(C3xC18).14C2^3432,293
(C3xC18).15C23 = C2xC9:Dic6φ: C23/C2C22 ⊆ Aut C3xC18144(C3xC18).15C2^3432,303
(C3xC18).16C23 = C2xDic3xD9φ: C23/C2C22 ⊆ Aut C3xC18144(C3xC18).16C2^3432,304
(C3xC18).17C23 = D18.3D6φ: C23/C2C22 ⊆ Aut C3xC18724(C3xC18).17C2^3432,305
(C3xC18).18C23 = C2xC18.D6φ: C23/C2C22 ⊆ Aut C3xC1872(C3xC18).18C2^3432,306
(C3xC18).19C23 = C2xC3:D36φ: C23/C2C22 ⊆ Aut C3xC1872(C3xC18).19C2^3432,307
(C3xC18).20C23 = C2xS3xDic9φ: C23/C2C22 ⊆ Aut C3xC18144(C3xC18).20C2^3432,308
(C3xC18).21C23 = Dic3.D18φ: C23/C2C22 ⊆ Aut C3xC18724(C3xC18).21C2^3432,309
(C3xC18).22C23 = D18.4D6φ: C23/C2C22 ⊆ Aut C3xC18724-(C3xC18).22C2^3432,310
(C3xC18).23C23 = C2xD6:D9φ: C23/C2C22 ⊆ Aut C3xC18144(C3xC18).23C2^3432,311
(C3xC18).24C23 = C2xC9:D12φ: C23/C2C22 ⊆ Aut C3xC1872(C3xC18).24C2^3432,312
(C3xC18).25C23 = S3xC9:D4φ: C23/C2C22 ⊆ Aut C3xC18724(C3xC18).25C2^3432,313
(C3xC18).26C23 = D9xC3:D4φ: C23/C2C22 ⊆ Aut C3xC18724(C3xC18).26C2^3432,314
(C3xC18).27C23 = D18:D6φ: C23/C2C22 ⊆ Aut C3xC18364+(C3xC18).27C2^3432,315
(C3xC18).28C23 = C18xDic6φ: C23/C22C2 ⊆ Aut C3xC18144(C3xC18).28C2^3432,341
(C3xC18).29C23 = S3xC2xC36φ: C23/C22C2 ⊆ Aut C3xC18144(C3xC18).29C2^3432,345
(C3xC18).30C23 = C18xD12φ: C23/C22C2 ⊆ Aut C3xC18144(C3xC18).30C2^3432,346
(C3xC18).31C23 = C9xC4oD12φ: C23/C22C2 ⊆ Aut C3xC18722(C3xC18).31C2^3432,347
(C3xC18).32C23 = S3xD4xC9φ: C23/C22C2 ⊆ Aut C3xC18724(C3xC18).32C2^3432,358
(C3xC18).33C23 = C9xD4:2S3φ: C23/C22C2 ⊆ Aut C3xC18724(C3xC18).33C2^3432,359
(C3xC18).34C23 = S3xQ8xC9φ: C23/C22C2 ⊆ Aut C3xC181444(C3xC18).34C2^3432,366
(C3xC18).35C23 = C9xQ8:3S3φ: C23/C22C2 ⊆ Aut C3xC181444(C3xC18).35C2^3432,367
(C3xC18).36C23 = Dic3xC2xC18φ: C23/C22C2 ⊆ Aut C3xC18144(C3xC18).36C2^3432,373
(C3xC18).37C23 = C18xC3:D4φ: C23/C22C2 ⊆ Aut C3xC1872(C3xC18).37C2^3432,375
(C3xC18).38C23 = C6xDic18φ: C23/C22C2 ⊆ Aut C3xC18144(C3xC18).38C2^3432,340
(C3xC18).39C23 = D9xC2xC12φ: C23/C22C2 ⊆ Aut C3xC18144(C3xC18).39C2^3432,342
(C3xC18).40C23 = C6xD36φ: C23/C22C2 ⊆ Aut C3xC18144(C3xC18).40C2^3432,343
(C3xC18).41C23 = C3xD36:5C2φ: C23/C22C2 ⊆ Aut C3xC18722(C3xC18).41C2^3432,344
(C3xC18).42C23 = C3xD4xD9φ: C23/C22C2 ⊆ Aut C3xC18724(C3xC18).42C2^3432,356
(C3xC18).43C23 = C3xD4:2D9φ: C23/C22C2 ⊆ Aut C3xC18724(C3xC18).43C2^3432,357
(C3xC18).44C23 = C3xQ8xD9φ: C23/C22C2 ⊆ Aut C3xC181444(C3xC18).44C2^3432,364
(C3xC18).45C23 = C3xQ8:3D9φ: C23/C22C2 ⊆ Aut C3xC181444(C3xC18).45C2^3432,365
(C3xC18).46C23 = C2xC6xDic9φ: C23/C22C2 ⊆ Aut C3xC18144(C3xC18).46C2^3432,372
(C3xC18).47C23 = C6xC9:D4φ: C23/C22C2 ⊆ Aut C3xC1872(C3xC18).47C2^3432,374
(C3xC18).48C23 = C2xC12.D9φ: C23/C22C2 ⊆ Aut C3xC18432(C3xC18).48C2^3432,380
(C3xC18).49C23 = C2xC4xC9:S3φ: C23/C22C2 ⊆ Aut C3xC18216(C3xC18).49C2^3432,381
(C3xC18).50C23 = C2xC36:S3φ: C23/C22C2 ⊆ Aut C3xC18216(C3xC18).50C2^3432,382
(C3xC18).51C23 = C36.70D6φ: C23/C22C2 ⊆ Aut C3xC18216(C3xC18).51C2^3432,383
(C3xC18).52C23 = D4xC9:S3φ: C23/C22C2 ⊆ Aut C3xC18108(C3xC18).52C2^3432,388
(C3xC18).53C23 = C36.27D6φ: C23/C22C2 ⊆ Aut C3xC18216(C3xC18).53C2^3432,389
(C3xC18).54C23 = Q8xC9:S3φ: C23/C22C2 ⊆ Aut C3xC18216(C3xC18).54C2^3432,392
(C3xC18).55C23 = C36.29D6φ: C23/C22C2 ⊆ Aut C3xC18216(C3xC18).55C2^3432,393
(C3xC18).56C23 = C22xC9:Dic3φ: C23/C22C2 ⊆ Aut C3xC18432(C3xC18).56C2^3432,396
(C3xC18).57C23 = C2xC6.D18φ: C23/C22C2 ⊆ Aut C3xC18216(C3xC18).57C2^3432,397
(C3xC18).58C23 = D4xC3xC18central extension (φ=1)216(C3xC18).58C2^3432,403
(C3xC18).59C23 = Q8xC3xC18central extension (φ=1)432(C3xC18).59C2^3432,406
(C3xC18).60C23 = C4oD4xC3xC9central extension (φ=1)216(C3xC18).60C2^3432,409

׿
x
:
Z
F
o
wr
Q
<